PEBBLE GAMES AND LINEAR EQUATIONS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pebble Games and Linear Equations

We give a new, simplified and detailed account of the correspondence between levels of the Sherali–Adams relaxation of graph isomorphism and levels of pebble-game equivalence with counting (higher-dimensional Weisfeiler–Lehman colour refinement). The correspondence between basic colour refinement and fractional isomorphism, due to Tinhofer [22, 23] and Ramana, Scheinerman and Ullman [17], is re...

متن کامل

Interpolation, Preservation, and Pebble Games

Preservation and interpolation results are obtained for L1! and sublog-ics L L1! such that equivalence in L can be characterized by suitable back-and-forth conditions on sets of partial isomorphisms.

متن کامل

Pebble Games for Rank Logics

We show that equivalence in finite-variable infinitary logic with rank operators can be characterised in terms of pebble games based on set partitions. This gives us a game-based method for proving lower bounds for FOR and IFPR, the extensions of first-order and fixed-point logic with rank operators, respectively. As an illustration of the game method, we establish that over finite structures, ...

متن کامل

Pebble Games with Algebraic Rules

We define a general framework of partition games for formulating twoplayer pebble games over finite structures. We show that one particular such game, which we call the invertible-map game, yields a family of polynomial-time approximations of graph isomorphism that is strictly stronger than the well-known Weisfeiler-Lehman method. The general framework we introduce includes as special cases the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Symbolic Logic

سال: 2015

ISSN: 0022-4812,1943-5886

DOI: 10.1017/jsl.2015.28